ПалеоФлора - окаменелое дерево, отпечатки растений

Современные высшие растения возникли в результате сдвига экспрессии генов

10.04.18

Для жизненного цикла всех высших растений характерно чередование гаплоидных и диплоидных фаз, имеющих, соответственно, одну или две копии генома в каждой клетке. Гаплоидная фаза жизненного цикла растений называется гаметофитом, диплоидная — спорофитом. Судя по всему, на первых порах в жизненном цикле высших растений преобладал гаметофит, а спорофит был лишь зависимой «надстройкой» (такая ситуация сохраняется сейчас у мхов). Но у большинства современных высших растений спорофит живет самостоятельно и является главной жизненной формой: все папоротники, деревья, травы — спорофиты. Предложена гипотеза, согласно которой переход от крайне простого и зависимого спорофита к сложному и автономному произошел в результате переноса на спорофит экспрессии нескольких групп регуляторных генов, которые вначале обеспечивали развитие гаметофита. Это — генетический механизм важнейшего эволюционного события, изменившего облик Земли.



Рис. 1. Эволюционный процесс, слагающийся из переходящих друг в друга жизненных циклов. В качестве примеров выбрано происхождение сосудистых растений (слева) и происхождение птиц (справа). В данном случае онтогенез можно считать синонимом жизненного цикла, а филогенез — синонимом эволюции. Рисунок Вальтера Циммермана (Walter Zimmermann)


Жизненные циклы и эволюция 

Любой живой организм, от вируса до слона, человека или дуба, обязательно проходит жизненный цикл — устойчивую последовательность фаз (или стадий), часть из которых в норме сопровождается размножением. Чередование жизненных циклов равносильно смене поколений. По ходу этого чередования жизненные циклы «редактируются», и вносимые в них небольшие изменения слагаются в историческое развитие жизни — эволюцию (рис. 1). Попросту говоря, биологическая эволюция — это сумма изменений жизненных циклов. Сопряжение жизненного цикла и эволюции — важнейшая особенность, свойственная всем живым системам и только им (А. С. Раутиан, 1993. О природе генотипа и наследственности). Одна из самых интересных проблем, с которыми имеют дело биологи в этой области — происхождение и эволюция жизненного цикла наземных растений.

Жизненный цикл, состоящий из повторяющихся стадий, есть абсолютно у любого живого существа. Но на этом однообразие кончается: например, жизненные циклы вируса и многоклеточного животного не имеют между собой почти ничего общего («почти» — потому что молекулярные механизмы копирования и считывания наследственной информации у них все же едины). У эукариот — организмов со сложной клеткой, хранящей генетический материал в ядре, — жизненный цикл, как правило, состоит из сменяющих друг друга фаз с разным числом копий ядерного генома, или, как принято говорить, с разной плоидностью. Клетка, хранящая в ядре одну копию генома, называется гаплоидной, две копии — диплоидной (бывают и более высокие плоидности, но мы сейчас их не рассматриваем). Диплоидная фаза переходит в гаплоидную в результате мейоза — особого способа клеточного деления, при котором из одной диплоидной клетки образуется четыре гаплоидных. Гаплоидная фаза переходит в диплоидную в результате оплодотворения — слияния двух гаплоидных клеток, которые называют половыми клетками или гаметами (случаи, когда слияние ядер отделено от слияния клеток, как у инфузорий или высших грибов, мы сейчас опять же не рассматриваем, потому что сути дела они не меняют). Диплоидная клетка, образованная слившимися гаметами, называется зиготой. Именно с зиготы начинается, например, эмбриональное развитие животных.

Есть три типа жизненных циклов эукариот, отличающихся способом чередования гаплоидной и диплоидной фаз. 

 1) Жизненный цикл, где «главная», питающаяся и растущая, стадия, — гаплоидная. В этом случае гаметы образуются митозом — обычным «повседневным» делением, в результате которого каждая клетка дает две себе подобных. Гаметы сливаются в зиготу, которая сразу же делится мейозом, вновь давая гаплоидные клетки. Такой жизненный цикл называется жизненным циклом с зиготической редукцией. Никаких диплоидных стадий, кроме зиготы, в нем нет. Примеры обладателей жизненного цикла с зиготической редукцией — одноклеточная зеленая водоросль хламидомонада, колониальная зеленая водоросль вольвокс, нитчатая зеленая водоросль улотрикс. 

 2) Жизненный цикл, где питающаяся и растущая стадия — диплоидная. В этом случае зигота делится митозом, давая диплоидные клетки, а мейоз происходит только при образовании гамет. Такой жизненный цикл называется жизненным циклом с гаметической редукцией. Все стадии, кроме гамет, в нем диплоидные. Примеры обладателей жизненного цикла с гаметической редукцией — бурая водоросль фукус и все многоклеточные животные, включая, разумеется, и человека. 

 3) Жизненный цикл, в котором есть две питающихся и растущих стадии — одна гаплоидная, а другая диплоидная. В этом случае некоторые клетки диплоидного организма делятся мейозом, но дают не гаметы, а споры — гаплоидные клетки, любая из которых может дать новый организм без оплодотворения, то есть ни с кем не сливаясь. Из споры вырастает гаплоидный организм, который образует гаметы путем обычного деления — митоза. Из слившихся гамет образуется зигота, дающая диплоидный организм, после чего цикл повторяется. Такой жизненный цикл называется жизненным циклом со спорической редукцией (рис. 2). Примеры его обладателей — одноклеточные фораминиферы, пластинчатая зеленая водоросль ульва и все высшие растения.



Рис. 2. Жизненный цикл со спорической редукцией, характерный для высших растений. На подобных схемах гаплоидные клетки или стадии обозначаются n (с одной копией генома), а диплоидные 2n (с двумя копиями генома). Остальные пояснения в тексте. Рисунки с сайтов dummies.com и macmillanhighered.com, с изменениями


У высших растений и водорослей, имеющих жизненный цикл со спорической редукцией, диплоидную стадию (производящую споры) принято называть спорофитом, а гаплоидную стадию (производящую гаметы) гаметофитом. У зеленой водоросли ульвы спорофит и гаметофит изоморфны, то есть устроены совершенно одинаково — без микроскопа их не отличить. Но это редкий случай. Обычно спорофит и гаметофит отличаются друг от друга, часто до полной неузнаваемости. 

 Например, у папоротников (вроде часто встречающегося в наших лесах орляка) спорофит — это хорошо всем знакомое растение с подземным стеблем, мощными корнями и крупными сложными перистыми листьями, а гаметофит — маленькая зеленая пластинка, растущая прямо на почве и называемая заростком. У хвощей ситуация аналогичная: спорофит — это сам хвощ, а гаметофит — маленький пластинчатый заросток, найти который неспециалисту очень трудно. У плаунов гаметофит зачастую подземный, бесцветный и неспособный фотосинтезировать — на пушистый ветвящийся зеленый спорофит, который мы встречаем в лесу и называем плауном в обычной жизни, он ничуть не похож. 

Наконец, у голосеменных и цветковых растений женский гаметофит скрыт внутри семени, которое само является ничем иным, как органом спорофита, и из которого сразу вырастает спорофит следующего поколения. Женский гаметофит семенных растений ни на каком отрезке жизненного цикла не существует автономно — в отличие от мужского, который стал микроскопическим и называется пыльцевым зерном. Пыльца — это множество мужских гаметофитов, покрытых рассчитанной на перенос по воздуху прочной оболочкой. Нечего и говорить, что и мужской, и женский гаметофиты у семенных растений крайне уменьшены — в самом распространенном случае, соответственно, до двух и семи клеток (А. Л. Тахтаджян, 1980. Развитие мужского и женского гаметофита). Все известные нам травы, кустарники и деревья — это спорофиты. Именно они в основном образуют растительный покров Земли.

Единственная современная группа высших растений, где гаметофит доминирует над спорофитом, — мхи. Основная зеленая часть растения мха — это гаплоидный гаметофит. Что касается диплоидного спорофита, то он у мхов представляет собой стволик с коробочкой, который растет прямо на гаметофите и питается за его счет (фотосинтезировать он, как правило, неспособен). Спорофит мхов никогда не бывает автономным, он всегда «нахлебничает» на гаметофите. Такой спорофит называется матротрофным — «питающимся от матери». 

Мы видим, что жизненный цикл высших растений гораздо сложнее привычного нам жизненного цикла животных. Чередование гаплоидной и диплоидной многоклеточных фаз, еще и сильно отличающихся друг от друга, — чисто растительное «изобретение», животным оно неведомо. А поскольку земные биологи сами являются животными, то неудивительно, что разобраться в этом им удалось далеко не сразу — путаница продолжалась до середины XIX века, когда немецкий ботаник Вильгельм Гофмейстер (Friedrich Wilhelm Benedikt Hofmeister) сумел правильно «расшифровать» жизненный цикл цветковых. 

 А теперь зададимся вопросом о том, как этот жизненный цикл возник.

Сценарий происхождения высших растений Начнем с самого начала. Высшие растения, несомненно, произошли от водорослей. Какой же жизненный цикл был у этих водорослей-предков? 

Ответ известен. Скорее всего, у них был жизненный цикл с зиготической редукцией, то есть с единственной гаплоидной многоклеточной стадией (без спорофита). Из молекулярной систематики это следует вполне однозначно. Зеленые водоросли со сменой гаметофита и спорофита существуют, но — вот ирония судьбы! — все они настолько далеки от высших растений, что никак не могут быть их предками. А вот те водоросли, которые к наземным растениям близки — харовые, колеохетовые, сцеплянки — все без исключения имеют жизненный цикл с зиготической редукцией, в котором единственной диплоидной стадией является зигота. Это означает, что высшие растения не унаследовали многоклеточный спорофит от предков, а «изобрели» его совершенно самостоятельно. Стадия спорофита стала своего рода «вставкой» в древний жизненный цикл, который исходно был целиком гаплоидным (кроме зиготы). 

Как именно это произошло? По последним молекулярным данным, самыми близкими «внешними» родственниками высших растений являются водоросли-сцеплянки (B. R. Ruhfel et al., 2014. From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes). К этой группе относится, например, широко распространенная пресноводная нитчатая водоросль спирогира. Такие данные вполне согласуются с предположением, что предком наземных растений была нитчатая (или, возможно, пластинчатая) водоросль, жившая на мелководье либо на влажном берегу. «Тело» этой водоросли, как и у современных сцеплянок, было гаплоидным, а ее зигота сразу делилась мейозом на четыре неподвижные споры (апланоспоры), которые разносились течением или ветром, давая новые колонии.

Подробнее читайте на Elementy

Версия для печати
      

Магазин  *Скидки -10-20-30%

Кабошон из опализированного окаменелого дерева
Срез древовидного папоротника Tietea singularis

ТЕГИ

Метасеквойя Ландшафт Буриан Спорангии Пыльца
Lepidodendron Протерозой Мезопротерозой Отпечаток растений Medullosa
Сигиллярия Дуб Сосна Ель Австралия
Сердолик Araucaria mirabilis Плауновидные Семена Зимбабве
Любители Геном Мадагаскар Патагония Древоточцы
Орхидея Палеоцен Кембрий Голосеменное Байкал
Северная Америка Фауна Олигоцен CO2 Юра
Азия Пальма Микроскоп Пангея Зарождение жизни
Кислород Антарктика Индия Неоген Антарктида
Япония ООН Новая Зеландия США Палеонтология
Дагестан Формы сохранности Канада Годовые кольца Музеи
Птеридофиты Хвойное Арктика Sigillaria Каламиты

Все теги




2018 © ПалеоФлора | PaleoFlora.ru
Идея, разработка и создание
сайта - Сергей Хилько

Яндекс.Метрика

Окаменелое дерево, окаменелый лес, отпечатки растений, продажа окаменелого дерева, купить окаменелое дерево, палеонтология, магазин окаменелостей, интернет-магазин, минералы, опал, халцедон, кварц, фоссилии, палеофлора, шары из окаменелого дерева, окаменевшее дерево, Petrified wood
Работает на: Amiro CMS